Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Visualizing spatial lipid distribution in porcine lens by MALDI imaging high-resolution mass spectrometry.

Identifieur interne : 001658 ( Main/Exploration ); précédent : 001657; suivant : 001659

Visualizing spatial lipid distribution in porcine lens by MALDI imaging high-resolution mass spectrometry.

Auteurs : RBID : pubmed:20388918

English descriptors

Abstract

The intraocular lens contains high levels of both cholesterol and sphingolipids, which are believed to be functionally important for normal lens physiology. The aim of this study was to explore the spatial distribution of sphingolipids in the ocular lens using mass spectrometry imaging (MSI). Matrix-assisted laser desorption/ionization (MALDI) imaging with ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to visualize the lipid spatial distribution. Equatorially-cryosectioned, 12 microm thick slices of tissue were thaw-mounted to an indium-tin oxide (ITO) glass slide by soft-landing to an ethanol layer. This procedure maintained the tissue integrity. After the automated MALDI matrix deposition, the entire lens section was examined by MALDI MSI in a 150 microm raster. We obtained spatial- and concentration-dependent distributions of seven lens sphingomyelins (SM) and two ceramide-1-phosphates (CerP), which are important lipid second messengers. Glycosylated sphingolipids or sphingolipid breakdown products were not observed. Owing to ultra high resolution MS, all lipids were identified with high confidence, and distinct distribution patterns for each of them are presented. The distribution patterns of SMs provide an understanding of the physiological functioning of these lipids in clear lenses and offer a novel pathophysiological means for understanding diseases of the lens.

DOI: 10.1194/jlr.M005488
PubMed: 20388918

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Visualizing spatial lipid distribution in porcine lens by MALDI imaging high-resolution mass spectrometry.</title>
<author>
<name sortKey="Vidov, Veronika" uniqKey="Vidov V">Veronika Vidová</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="P L, Jaroslav" uniqKey="P L J">Jaroslav Pól</name>
</author>
<author>
<name sortKey="Volny, Michael" uniqKey="Volny M">Michael Volny</name>
</author>
<author>
<name sortKey="Nov K, Petr" uniqKey="Nov K P">Petr Novák</name>
</author>
<author>
<name sortKey="Havl Cek, Vladim R" uniqKey="Havl Cek V">Vladimír Havlícek</name>
</author>
<author>
<name sortKey="Wiedmer, Susanne K" uniqKey="Wiedmer S">Susanne K Wiedmer</name>
</author>
<author>
<name sortKey="Holopainen, Juha M" uniqKey="Holopainen J">Juha M Holopainen</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2010">2010</date>
<idno type="doi">10.1194/jlr.M005488</idno>
<idno type="RBID">pubmed:20388918</idno>
<idno type="pmid">20388918</idno>
<idno type="wicri:Area/Main/Corpus">001975</idno>
<idno type="wicri:Area/Main/Curation">001975</idno>
<idno type="wicri:Area/Main/Exploration">001658</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytic Sample Preparation Methods</term>
<term>Animals</term>
<term>Fourier Analysis</term>
<term>Lens, Crystalline (metabolism)</term>
<term>Lipid Metabolism</term>
<term>Molecular Imaging (methods)</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (methods)</term>
<term>Sphingolipids (metabolism)</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sphingolipids</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lens, Crystalline</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Molecular Imaging</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analytic Sample Preparation Methods</term>
<term>Animals</term>
<term>Fourier Analysis</term>
<term>Lipid Metabolism</term>
<term>Swine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The intraocular lens contains high levels of both cholesterol and sphingolipids, which are believed to be functionally important for normal lens physiology. The aim of this study was to explore the spatial distribution of sphingolipids in the ocular lens using mass spectrometry imaging (MSI). Matrix-assisted laser desorption/ionization (MALDI) imaging with ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to visualize the lipid spatial distribution. Equatorially-cryosectioned, 12 microm thick slices of tissue were thaw-mounted to an indium-tin oxide (ITO) glass slide by soft-landing to an ethanol layer. This procedure maintained the tissue integrity. After the automated MALDI matrix deposition, the entire lens section was examined by MALDI MSI in a 150 microm raster. We obtained spatial- and concentration-dependent distributions of seven lens sphingomyelins (SM) and two ceramide-1-phosphates (CerP), which are important lipid second messengers. Glycosylated sphingolipids or sphingolipid breakdown products were not observed. Owing to ultra high resolution MS, all lipids were identified with high confidence, and distinct distribution patterns for each of them are presented. The distribution patterns of SMs provide an understanding of the physiological functioning of these lipids in clear lenses and offer a novel pathophysiological means for understanding diseases of the lens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">20388918</PMID>
<DateCreated>
<Year>2010</Year>
<Month>07</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>10</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-2275</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>51</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2010</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of lipid research</Title>
<ISOAbbreviation>J. Lipid Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Visualizing spatial lipid distribution in porcine lens by MALDI imaging high-resolution mass spectrometry.</ArticleTitle>
<Pagination>
<MedlinePgn>2295-302</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1194/jlr.M005488</ELocationID>
<Abstract>
<AbstractText>The intraocular lens contains high levels of both cholesterol and sphingolipids, which are believed to be functionally important for normal lens physiology. The aim of this study was to explore the spatial distribution of sphingolipids in the ocular lens using mass spectrometry imaging (MSI). Matrix-assisted laser desorption/ionization (MALDI) imaging with ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to visualize the lipid spatial distribution. Equatorially-cryosectioned, 12 microm thick slices of tissue were thaw-mounted to an indium-tin oxide (ITO) glass slide by soft-landing to an ethanol layer. This procedure maintained the tissue integrity. After the automated MALDI matrix deposition, the entire lens section was examined by MALDI MSI in a 150 microm raster. We obtained spatial- and concentration-dependent distributions of seven lens sphingomyelins (SM) and two ceramide-1-phosphates (CerP), which are important lipid second messengers. Glycosylated sphingolipids or sphingolipid breakdown products were not observed. Owing to ultra high resolution MS, all lipids were identified with high confidence, and distinct distribution patterns for each of them are presented. The distribution patterns of SMs provide an understanding of the physiological functioning of these lipids in clear lenses and offer a novel pathophysiological means for understanding diseases of the lens.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vidová</LastName>
<ForeName>Veronika</ForeName>
<Initials>V</Initials>
<Affiliation>Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Pól</LastName>
<ForeName>Jaroslav</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Volny</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Novák</LastName>
<ForeName>Petr</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Havlícek</LastName>
<ForeName>Vladimír</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wiedmer</LastName>
<ForeName>Susanne K</ForeName>
<Initials>SK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holopainen</LastName>
<ForeName>Juha M</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Lipid Res</MedlineTA>
<NlmUniqueID>0376606</NlmUniqueID>
<ISSNLinking>0022-2275</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Sphingolipids</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2005 Feb 1;77(3):735-41</RefSource>
<PMID Version="1">15679338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 2006 Jul;47(7):2990-6</RefSource>
<PMID Version="1">16799044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteome Res. 2006 Nov;5(11):2889-900</RefSource>
<PMID Version="1">17081040</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2006 Nov 6;45(43):7188-92</RefSource>
<PMID Version="1">17001721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Vis. 2008;14:171-9</RefSource>
<PMID Version="1">18334935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 2009 Apr;50 Suppl:S317-22</RefSource>
<PMID Version="1">19050313</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteome Res. 2009 Jul;8(7):3278-83</RefSource>
<PMID Version="1">19326924</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Sep 15;877(26):2883-9</RefSource>
<PMID Version="1">19150258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 2009 Sep;50(9):4319-29</RefSource>
<PMID Version="1">19387068</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2009 Sep 15;81(18):7618-24</RefSource>
<PMID Version="1">19746995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2009 Oct 15;81(20):8479-87</RefSource>
<PMID Version="1">19761221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 2009 Nov;50(11):2290-8</RefSource>
<PMID Version="1">19429885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2010 Mar;1798(3):303-11</RefSource>
<PMID Version="1">19925778</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2010 May;1798(5):958-65</RefSource>
<PMID Version="1">20122897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Eye Res. 2003 Jun;76(6):725-34</RefSource>
<PMID Version="1">12742355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2004 Mar;86(3):1510-20</RefSource>
<PMID Version="1">14990478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2004 Mar 15;76(6):1657-63</RefSource>
<PMID Version="1">15018564</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2004 May 21;566(1-3):291-3</RefSource>
<PMID Version="1">15147911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol. 1974 Oct;13(10):713-24</RefSource>
<PMID Version="1">4278188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 1985 May;26(5):600-9</RefSource>
<PMID Version="1">4020298</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1987 Jan 13;917(1):112-20</RefSource>
<PMID Version="1">3790601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lens Eye Toxic Res. 1989;6(4):703-24</RefSource>
<PMID Version="1">2487279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 1994 Sep;35(10):3739-46</RefSource>
<PMID Version="1">8088961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 1994 Dec;35(13):4333-43</RefSource>
<PMID Version="1">8002253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Eye Res. 1995 Oct;14(10):937-41</RefSource>
<PMID Version="1">8549159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 1997 Dec 1;69(23):4751-60</RefSource>
<PMID Version="1">9406525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Rapid Commun Mass Spectrom. 1998;12(5):256-72</RefSource>
<PMID Version="1">9519478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mass Spectrom. 2004 Dec;39(12):1531-40</RefSource>
<PMID Version="1">15578747</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Analytic Sample Preparation Methods</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Fourier Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Lens, Crystalline</DescriptorName>
<QualifierName MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Lipid Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Molecular Imaging</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Swine</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2903793</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2010</Year>
<Month>4</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">jlr.M005488</ArticleId>
<ArticleId IdType="doi">10.1194/jlr.M005488</ArticleId>
<ArticleId IdType="pubmed">20388918</ArticleId>
<ArticleId IdType="pmc">PMC2903793</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001658 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001658 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20388918
   |texte=   Visualizing spatial lipid distribution in porcine lens by MALDI imaging high-resolution mass spectrometry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20388918" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024